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Most theories of homogeneous nucleation are based on a Fokker-Planck-like description of the behavior of
the mass of clusters. Here we will show that these approaches are incomplete for a large class of nucleating
systems, as they assume the effective dynamics of the clusters to be Markovian, i.e., memoryless. We charac-
terize these non-Markovian dynamics and show how this influences the dynamics of clusters during nucleation.
Our results are validated by simulations of a three-dimensional Ising model with locally conserved
magnetization.
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Nucleation is the process where a stable nucleus sponta-
neously emerges in a metastable environment. Excellent
books and reviews exist on this topic; in his recent book,
Kashchiev �1� listed about 30 books and 40 review articles
on nucleation. Examples of nucleation abound, for instance,
the formation of droplets in undercooled gasses and of crys-
tals in undercooled liquids. The process is thermally acti-
vated and is a key to understanding various subjects in bio-
physics, polymer physics, and chemistry. The physics behind
it has long been studied and the simplest version is known as
the classical nucleation theory �CNT� �2,3�.

In CNT the variations in the mass of a nucleus are de-
scribed as a Markovian stochastic process in which single
units attach and detach from the nucleus. The probability
p�m , t� that a nucleus has mass m at time t evolves via the
Fokker-Planck equation �3,4�,

�p�m,t�
�t

=
�

�m
�R�m���

�F

�m
+

�

�m
�p�m,t�� , �1�

with R�m� as the rate at which clusters of mass m grow to
clusters of mass m+1, F�m� is the free energy of a cluster of
mass m, and � is the inverse temperature. Phenomenological
expressions for R�m� and F�m� are provided to complete the
theory. F�m� increases for small m but decreases for large m,
and it retains its maximal value at the so-called critical
nucleus mass mc. Therefore, clusters with mass below mc
tend to shrink, whereas clusters larger than mc tend to grow.
Starting at time t=0 with cluster mass m�0�=mc, the mass
evolves diffusively in time; its mean-square change, aver-
aged over all realizations, 	�m�t�2
�	�m�t�−mc�2
, grows
linearly with time for small deviations from the critical mass.

Although, qualitatively, there is ample experimental veri-
fication of the predictions of CNT; quantitatively, the nucle-
ation rates it predicts may differ from experiment by 5–10
orders of magnitude �5�. CNT works really well if the nucle-
ation process is correctly described by a Markov process

with units attaching and detaching as uncorrelated events.
This is more or less the case in, for example, the Ising model
with spin-flip dynamics. However, in the presence of a local
conservation law, which, for example, is the case in binary
mixtures of fluids or gasses and the Ising model with local
spin-exchange dynamics, CNT shows serious shortcomings
due to the neglect of memory effects by describing the clus-
ter growth as a Markov process. The most dominant of these
is usually the strong correlation in time between attachment
and detachment events; after a particle detaches from the
nucleus, it remains in its neighborhood for a relatively long
time and is, therefore, likely to reattach. In fact, the theory of
Brownian motion �6� states that in two dimensions, every
detached particle will eventually return to the cluster, possi-
bly after an extremely long time, and that in three dimen-
sions, a fraction of the detached particles will never return.
Figure 1 illustrates this memory effect in the Ising model
with local spin-exchange dynamics. Two clusters of equal
mass are shown. The cluster in the left panel has just shrunk,
consequently has a higher density of particles surrounding it,
which enhances the probability that the cluster will grow; in
the right panel, the opposite is happening and the cluster is
more likely to shrink. These memory effects result in a be-
havior quite different from CNT. The relation between the
driving force −�F /�m and the drift velocity is more compli-
cated and the diffusion is anomalous, i.e., the mean-square
displacement scales nonlinearly with time.
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FIG. 1. Illustration of memory effects in the Ising model with
local spin-exchange dynamics �exaggerated�. Although they have
equal masses, the cluster in the left panel is likely to grow as it has
just shrunk, hence has higher density surrounding it, and vice versa
in the right panel.
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We develop a theory for the variation in the cluster mass,
where these memory effects are taken into account and show
that on different time scales different types of dynamical
behavior take place. We concentrate on states in three-
dimensional systems with a small gradient in free energy,
which is the case, for instance, for near-critical nuclei. In that
case, three distinct regimes show up. On very short time
scales the mean-square growth of a cluster scales linearly
with time similar to an ordinary diffusive process. This re-
gime is followed by a regime of anomalous diffusion with an
exponent of one half �i.e., 	�m�t�2
� t1/2�, and finally on
large time scales linear growth occurs again, but with a much
smaller prefactor than in the first regime. We validate our
theory with extensive simulation results on the mean-square
growth of near-critical nuclei in a three-dimensional Ising
model with local spin-exchange dynamics.

In our model, we consider a cluster in a dilute environ-
ment �shown in Fig. 1�. The variations in the cluster mass are
caused by four effects, namely, �1� the emission of particles
from the cluster that are returning �with return probability
pr�, �2� the emission of nonreturning particles, �3� the ab-
sorption of particles from far away �i.e., not returning from
previous emission�, and �4� the absorption of particles that
are returning. These four effects are illustrated in Fig. 2. The
first three effects are independent and are described by ran-
dom functions �r�t�, �nr

− �t�, and �nr
+ �t�, respectively. Each of

these random functions consists of a series of delta functions
at Poisson distributed random times, so that the cluster mass
m�t� is an integer at all times. Their average values obey

	�nr
+ �t�
 − 	�nr

− �t�
 = v�m�t�� , �2�

with v�m� as the systematic growth of a cluster of mass m.
The variations ����t�����t�− 	���t�
 obey


�

	��nr
��t���nr

��t��
 = 2�1 − pr�DM�m�t����t − t�� �3�

and

	��r�t���r�t��
 = prDM�m�t����t − t�� , �4�

with DM�m� as the diffusion coefficient describing the short-
time mass variations in a cluster of mass m. Equations

�2�–�4� fully determine the three random functions ���t�.
The absorption of returning particles is correlated with

their emission; a returning particle emitted at time � is re-
turning at time �+T�, with T� described by a return time
distribution �. Putting this together, one may describe the
evolution of a cluster by the stochastic differential equation,

ṁ�t� = �nr
+ �t� − �nr

− �t� − �r�t� + �
−	

t

d���t − � − T���r��� .

�5�

The first two terms are basically CNT and the addition of the
other two terms is new. This stochastic differential equation
is too hard to be solved in general, and therefore we restrict
ourselves first to near-critical clusters. On average critical
clusters equally absorb many particles as they emit, so we
assume v�m�=0. Furthermore, we assume that the diffusion
coefficient is m independent, DM�m�=DM. The average
growth 	�m�t�
 is then vanishing and the mean-square
growth can be calculated from

	�m�t�2
 = �
0

t

d��
0

t

d��	ṁ���ṁ����
 , �6�

which, after substituting Eq. �5� twice and using Eqs. �3� and
�4�, results in the following expression:

	�m�t�2
 = 2DM�t − pr�
0

t

d��t − ������� . �7�

The first term in this equation is an ordinary diffusion, which
is suppressed by the last term, since emission and absorption
are correlated at larger time scales.

Next we investigate various limits of the equation. We
assume that the time scale of spontaneous fluctuations �i.e.,
t�1 /DM� is much smaller than the time scale on which par-
ticles are typically returning. For small times the leading
term in Eq. �7� results in

	�m�t�2
 � 2DMt . �8�

At these time scales attachments and detachments occur at
different places on the cluster surface as independent events,
and therefore the mean-square cluster growth scales linearly
with time.

To investigate 	�m�t�2
 at larger times we have to specify
��t� in more detail. We assume that a detached particle
makes a three-dimensional random walk with diffusion coef-
ficient DB. Furthermore, it starts at a distance �R separated
from the cluster, which we consider to be a sphere of radius
R. This gives, for the return probability pr= R

R+�R and for the
return time distribution �7�,

��t� =
�R exp�− �R2/4DBt�

�4
DBt3/2 . �9�

Asymptotically at large times ��t�� t−3/2, but it is cutoff at
small times by the exponential. Using this distribution to
calculate the mean-square cluster growth for larger times re-
sults in

2

3

4

1

� �
� �

� �
� �

� �
� �

� �
� �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

FIG. 2. The four effects causing variations in the cluster mass:
�1� the emission of returning particles, �2� the emission the nonre-
turning particles, �3� the absorption of nonreturning particles, and
�4� the absorption of returning particles.
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	�m�t�2
 � 2�1 − pr�DMt + const�t . �10�

At large time scales, the first term dominates, and the cluster
dynamics is determined by particles being emitted to and
absorbed from far away with rate 2�1− pr�DM. At those large
times, the change in cluster size is determined by nonreturn-
ing absorbed and emitted particles, and those particles can be
treated as independent events. At intermediate time scales,
however, the anomalous diffusion dominates if pr is close to
1, which it typically is. This behavior is caused by emitted
particles that are returning, much comparable to single file
diffusion �8�. Note that if the return probability is 1, the
anomalous diffusion lasts forever. This may happen, for ex-
ample, in many two-dimensional systems, although the long-
time behavior is different from Eq. �10�, due to a different
return time distribution ��t�.

To validate the presented theoretical picture, simulations
were performed on a three-dimensional Ising model with lo-
cal spin-exchange �Kawasaki� dynamics with Metropolis ac-
ceptance probabilities �9,10�, a prototypic system to study
nucleation. The Hamiltonian is given by

H = − J
	i,j


sisj + h
i

si, �11�

with the first sum over all pairs of adjacent sites. A three-
dimensional cubic lattice of size 32�32�32 with periodic
boundary conditions has been used for the simulations. The
temperature is chosen as kBT=2.5J, well below the critical
temperature of kBTc�4.5J �10�. An oversaturated initial con-
figuration is first brought into equilibrium under constant
magnetization, resulting in a single large cluster of mc spins
in equilibrium with its surroundings with a density of 1.2%.
Next, besides the spin-exchange moves, we also perform
spin flips in three strips of the box �one in each principal
direction�, as far away from the cluster as possible. These
spin-flip moves mimic an infinite reservoir of up-pointing
spins and render the cluster instable. The strength of the
external field h is fixed at the value giving the initial cluster
a critical size, hence zero average growth rate. The free en-
ergy as a function of cluster mass is plotted in Fig. 3, before
�left� and after �right� lifting the constraint on the magneti-
zation.

The time evolution of this cluster is then measured and
the resulting mean-square change in cluster mass as a func-
tion of time, averaged over about 70,000 realizations, is
shown in Fig. 4. For comparison, our theoretical estimate of
	�m�t�2
 is plotted with the simulation data. Our theory re-
quires as input the function ��t�, with its parameters DB, R,
and �R, and the parameters DM and pr. They are chosen as
follows. The distribution ��t� is as in Eq. �9�, multiplied by
an exponential, since the system has a finite size and long
return times are exponentially suppressed. The result de-
pends very little on the chosen exponent. Furthermore, DB

= 1
2 , in accordance with the definition of time in our model,

and R is chosen such that mc= 4
3
R3. The parameter �R is the

initial distance between the cluster and a spin which has just
detached from it. If the spin detaches radially, this distance
equals the lattice spacing, but the effective distance can be
smaller by a factor of up to 2 in other directions. We chose
�R= 8+
2

8
 , since that is the average distance between a spheri-
cal cluster and the sites neighboring it on the square lattice.
The diffusion coefficient DM in Eq. �7� and subsequently the
return probability pr are fitted.

The theory captures the general trend well. For short
times ordinary diffusion is observed in the simulation data,
after which anomalous diffusion with an exponent of one
half is clearly present, as indicated by the dashed line in Fig.
4. For large times, however, the cluster is so far out of equi-
librium that the gradient in the free energy is nonzero, so that
	�m�t�
�0 and 	�m�t�2
 grows superlinearly with time. We
verified that the same results hold, qualitatively, for different
values of the temperature.

Next, we turn to the consequences of these memory ef-
fects on nucleation times. To obtain nucleation times, Eq. �5�
should be solved in the presence of a free-energy barrier,
which results in a systematic growth v�m� in Eq. �2�. The
phenomenological expression for the free energy from CNT
�2,3� or quadratic approximation could be used. This work is
still in progress, and therefore we resort to scaling arguments
in the meantime.

Instead of the nucleation time, we focus on the vaporiza-
tion time �i.e., the time it takes for a critical nucleus to va-
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porize�; these two times are connected via detailed balance
by Tnucl�e��FTvap; hence Tvap is the pre-exponential factor
of the nucleation time. This vaporization time is mainly dic-
tated by the time a critical cluster resides in a region near the
top of the free-energy barrier; after that it vaporizes rela-
tively fast due to the gradient in the free energy. We define
this region near the top as the region where the free energy is
less than kBT below the maximum value F�mc� and call its
width �m. In CNT the residence time for this region, often
referred to as the Zeldovich factor �11�, scales as Tres��m2.
If, in Eq. �10�, the anomalous diffusion is taken over by the
normal diffusion at the residence time, the memory effects
only result in rescaling the diffusion coefficient by a factor of
1− pr. However, if the cluster dynamics show subdiffusive
behavior up to this residence time, then 	�m�t�2
��t, so that
the residence time is proportional to �m4. Which behavior
occurs depends on numerous variables, such as the shape of
the free-energy landscape and the mobility of detached par-
ticles.

Another view on the consequences of memory effects on

the nucleation time is that compared to CNT with rescaled
diffusion coefficient Deff= �1− pr�DM, anomalous diffusion is
present in addition to CNT’s ordinary diffusion. This results
in increased mass fluctuations around the critical mass, hence
decreases the residence time and, therefore, also the nucle-
ation time.

In summary, we have demonstrated that memory effects
are playing an important role in the dynamics of nucleation.
The time evolution of nucleating clusters shows conse-
quently anomalous diffusion. These memory effects can be
captured by a simple stochastic differential Eq. �5�, which
gives measurable results for critical clusters. These effects
probably also have impact on the nucleation times. An ana-
lytic treatment of this equation in the presence of a free-
energy barrier is, therefore, an interesting topic for future
research and might lead to new quantitative predictions for
nucleation times.

We thank Henk van Beijeren for useful discussion.
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